中教数据库 > 电光与控制 > 文章详情

基于改进CNN的海军军事文本分类模型

更新时间:2023-05-28

【摘要】针对传统的文本分类方法在海军军事文本分类上准确度不高的问题,根据海军军事文本中重点信息的位置分布规律,改进了传统的一维卷积神经网络,并进一步设计海军军事文本分类模型。在一维卷积方面,提出变步长卷积方法,文本首尾位置采用低步长、中间位置采用高步长挖掘文本特征,提高文本首尾位置的重点特征的挖掘能力;在一维池化方面,提出带权池化方法,将文本位置信息转化为权重值参与池化运算,体现文本位置信息的重要程度。实验结果表明,与传统的支持向量机、K近邻算法、一维卷积神经网络以及长短期记忆网络模型相比,该文本分类模型的准确率、召回率、F1值均有所提高。

【关键词】

214 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号