【摘要】针对传统的文本分类方法在海军军事文本分类上准确度不高的问题,根据海军军事文本中重点信息的位置分布规律,改进了传统的一维卷积神经网络,并进一步设计海军军事文本分类模型。在一维卷积方面,提出变步长卷积方法,文本首尾位置采用低步长、中间位置采用高步长挖掘文本特征,提高文本首尾位置的重点特征的挖掘能力;在一维池化方面,提出带权池化方法,将文本位置信息转化为权重值参与池化运算,体现文本位置信息的重要程度。实验结果表明,与传统的支持向量机、K近邻算法、一维卷积神经网络以及长短期记忆网络模型相比,该文本分类模型的准确率、召回率、F1值均有所提高。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《重庆高教研究》 2015-06-26
《当代体育科技》 2015-07-07
《现代制造技术与装备》 2015-07-02
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点